

---

## **Molecular identification of marine fish from two fish landing sites in Yogyakarta, Indonesia**

---

**Purba, L. H. P. S.\*, Simanjuntak, M., Sutan, D. K. and Satwika, D.**

Department of Biology, Faculty of Biotechnology, Universitas Kristen Duta Wacana, Special Region of Yogyakarta 55224, Indonesia.

Purba, L. H. P. S., Simanjuntak, M., Sutan, D. K. and Satwika, D. S. (2026). Molecular identification of marine fish from two landing sites in Yogyakarta, Indonesia. International Journal of Agricultural Technology 22(1):401-414.

**Abstract** A total of 16 species were identified, each representing a different genera, spanning 10 families and 8 orders. Most samples exhibited genetic similarity and identity values above 97%, confirming reliable species-level identification. Interspecific genetic distances exceeded 0.1, consistent with standard thresholds for species delineation. Notably, two species were classified as near-threatened and endangered, highlighting conservation concerns. These findings demonstrated the utility of COI barcoding as a genetic tool for monitoring marine biodiversity in Indonesia. This approach is supported sustainable fisheries management and the conservation of threatened marine species in Indonesia.

**Keywords:** *COI*, DNA barcoding, Marine fish, Yogyakarta

### **Introduction**

Indonesia is recognized as a megabiodiverse country with a rich diversity of marine biodiversity. Yogyakarta, a province on the island of Java, has its southern region included in Fisheries Management Area 573 (FMA 573). The dominant fish species in this area are classified as pelagic fish, including mackerel scad (*Decapterus* spp.), mackerel (*Rastrelliger* sp.), and yellowtail scad (*Selaroides* spp.) (Khatami *et al.*, 2019). Despite the high potential, fishery resource utilization in this area remains suboptimal, and several species have experienced growth overfishing. A species must have a clear and globally agreed taxonomy to make it easier for researchers to discuss a species. This study aims to identify species marine fish that caught on the coast of the Special Region of Yogyakarta using molecular approach. Current monitoring activities rely on traditional methods (such as using nets) which depend on capturing target fish species. However, these methods have a negative impact on marine ecosystems due to fishing activities, necessitating alternative, more sustainable approaches

---

\* Corresponding Author: Purba, L. H. P. S.; Email: [laurentiapermita@staff.ukdw.ac.id](mailto:laurentiapermita@staff.ukdw.ac.id)

to conserve marine biodiversity without threatening ecosystem safety. A more sustainable monitoring approach is genetic conservation.

Traditionally, fish species identification has been based on fish morphology. This identification uses key morphological characteristics such as body shape, color pattern, size, number of scales, number of fins, and various relative measurements of fish body parts (Azrita and Syandri, 2015; Kusumanigrum *et al.*, 2021). This method is limited, and less accurate, as morphological characteristics can be influenced by environmental factors. These limitations have encouraged development of new methods, such as DNA-based taxonomy. For formulating effective conservation plans and preserving genetic diversity in sampled fish, DNA barcoding is highly promising (Modeel *et al.*, 2024). The application of DNA barcoding to determine the characteristics, distribution patterns, and conservation status of a sample is highly beneficial, and the data obtained tends to be reliable (Antil *et al.*, 2023; Fitrian and Madduppa, 2020; Ward *et al.*, 2005). A foundational step toward genetic conservation is identifying genetic diversity using molecular markers. One gene commonly utilised in DNA barcoding is the COI gene, particularly in fish taxonomy.

The cytochrome c oxidase subunit I (COI) gene serves as a reliable marker for detecting and distinguishing various fish species. Using the COI gene from DNA enables more accurate species identification compared to morphological methods (Hebert *et al.*, 2003). Due to its high AT content, the COI gene has proven effective in fish taxonomy and the detection of marine biodiversity (Arisuryanti *et al.*, 2024). It serves as an effective marker for assessing species relationships in waters worldwide (Wang *et al.*, 2012). In this study, the species identification and genetic relationships between species were conducted using the COI gene as a genetic marker.

## Materials and methods

### *Sample collection*

The present study was conducted from April 2024 to September 2024. A total 46 individuals of fish samples were collected from fish landing sites in Depok Beach and Baron Beach. After collection, the fish samples were thoroughly cleaned. Each fish samples were placed in a ziploc bag before being stored in a coolbox and then transported to the Laboratory of Health Biotechnology at tUniversitas Kristen Duta Wacana. The right muscle pectoral fins of the samples were be cut approximately 1 cm<sup>2</sup>, then dissected using sterilized surgical scissors. The tissue sample was placed into a 1.5 mL screw-

cap cryogenic tube and preserved in 95% alcohol. These samples were then used in the molecular analysis process.

#### ***DNA extraction, amplification, and COI fragment electrophoresis***

Total genomic DNA was isolated from 30 mg pectoral fin muscle tissue from each fish specimen. This extraction step was performed using the Genomic DNA Mini Kit (Tissue) (Geneaid), according to the manufacturer's instructions. Using a pair of universal primers for the mitochondrial COI gene fragment, (forward (F1): 5'- TCAACCAACCACAAAGACATTGGCAC-3' and reverse (R1): 5'-TAGACTTCTGGGTGGCAAAGAATCA-3') (Ward *et al.*, 2005). The amplification was conducted using the PeqSTAR thermal cycler (Peqlab) with PCR reaction consisted of a 25  $\mu$ L total reaction volume, including 12.5  $\mu$ L MyTaq HS Red Mix (Bioline), 5  $\mu$ L genomic DNA, 5.5  $\mu$ L sterile water (ddH<sub>2</sub>O), and 1  $\mu$ L of each primer. The PCR condition consisted of an initial pre-denaturation at 94°C for 4 min, followed by 28 cycles of denaturation at 94°C for 45s, annealing at 50°C for 40s, and extension at 72°C for 40s, concluding with a final extension at 72°C for 10 min (Zhang *et al.*, 2020). ddH<sub>2</sub>O was included as a negative control to detect DNA contaminant. The amplicons (3  $\mu$ L - 5  $\mu$ L) were analyzed electrophoresis using 1% gel agarose stained with florosafe (1<sup>st</sup> BASE Biochemicals). Electrophoresis was run at 100 V for 30 minutes, after which the gel was observed under ultraviolet light using a GelDoc. The experiment was conducted at Research Laboratory, Department of Biology, Biotechnology Faculty, Universitas Kristen Duta Wacana, Yogyakarta.

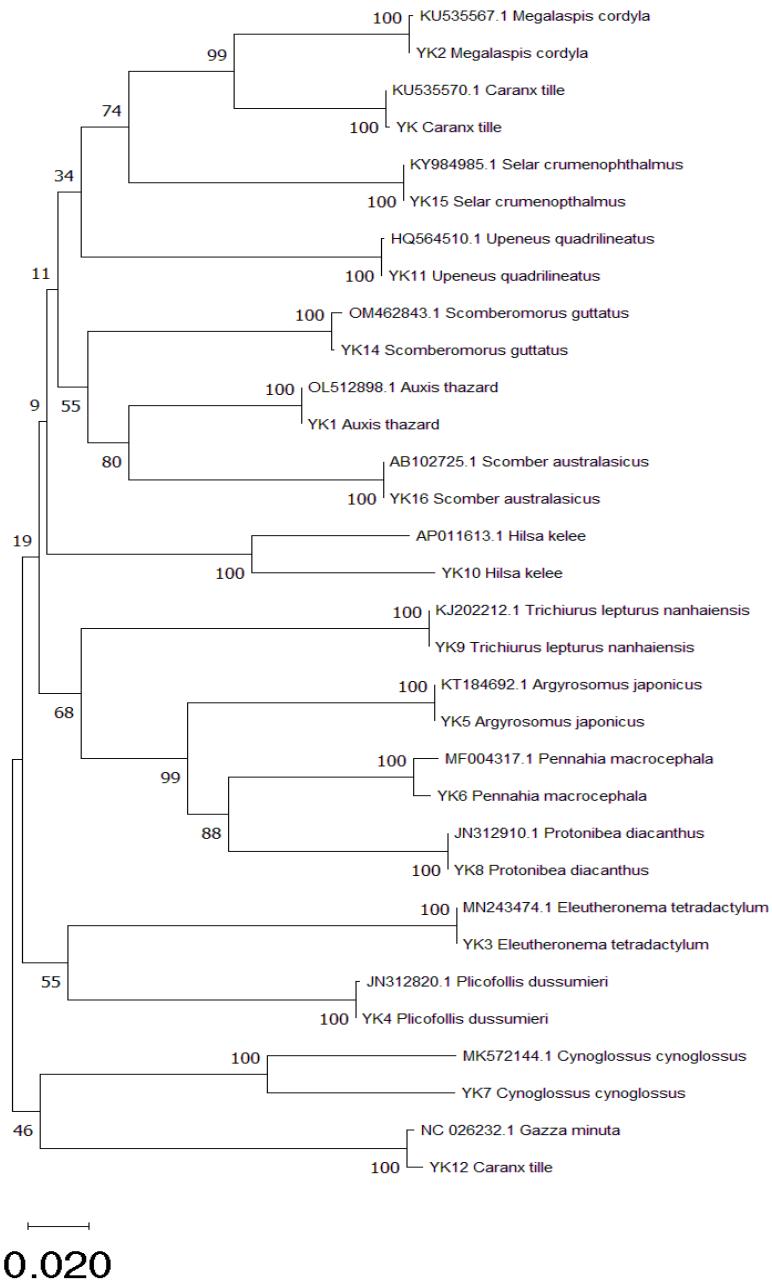
#### ***Sequencing and phylogeny analysis***

Positive band amplification samples were sent to PT. Genetika Science Indonesia for sequencing. The DNA sequences obtained from sequencing will be edited to create an example of forward and reverse COI fragments. subsequently, alignment will be performed using BioEdit and MEGA 11 software (Tamura *et al.*, 2021). All the obtained sequences of the target region were then analyzed by alignment using data available in GenBank by the BLAST system (<https://blast.ncbi.nlm.nih.gov>). For the phylogenetic reconstruction, we utilized a total of 46 sequences. The phylogenetic tree was constructed for COI sequence alignments using the Neighbor- Joining (NJ) methods, with the Kimura-2 Parameter (K2P) substitution model and 1000 bootstrap replications on MEGA X software.

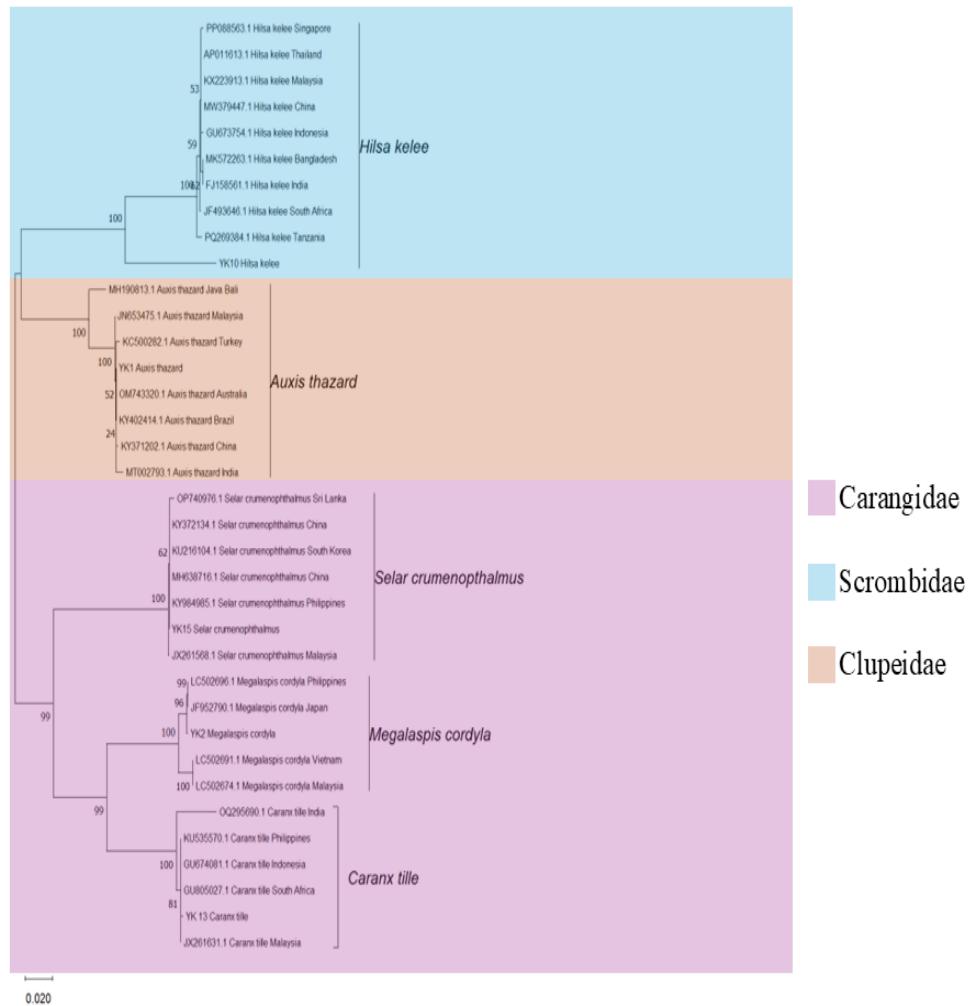
## Results

*COI* gene fragments (644 bp) were successfully obtained from 16 marine fish species at two landing sites of Yogyakarta. We used this 644 bp *COI* gene fragment in conducting similarity analysis using BLAST-N (<https://blast.ncbi.nlm.nih.gov>). All the sample sequences were showed high identity percentage value above 98% except for *Cynoglossus cynoglossus* and *Hilsa kelee* (Table 1). The phylogenetic tree showed that each sample sequence was grouped with the respective reference sequence. The 16 fish species belonged to eight families, 10 orders, and 16 Genera. The common name, taxonomic status, fish group name, habitat, IUCN conservational status, and the Genbank accession number for all the samples are shown in Table 2.

**Table 1.** Similiarity result based on BLAST-N of marine fish species found in two landing sites in Yogyakarta


| ID   | Organism<br>species of<br>sample<br>sequence | Query cover | E-value | Identity<br>(%) | Accession<br>number |
|------|----------------------------------------------|-------------|---------|-----------------|---------------------|
| YK1  | <i>Auxis thazard</i> *                       | 0.99        | 0       | 99.29           | MK801690            |
| YK2  | <i>Megalaspis cordyla</i> *                  | 0.94        | 0       | 99.56           | KU535567            |
| YK3  | <i>Eleutherone ma rhadinum</i>               | 0.99        | 0       | 99.72           | MW845829            |
| YK4  | <i>Plicofollis dussumieri</i>                | 0.94        | 0       | 99.85           | JN312820            |
| YK5  | <i>Argyrosomus japonicus</i>                 | 0.99        | 0       | 99.15           | KT184692            |
| YK6  | <i>Pennahia macrocephalus</i>                | 0.99        | 0       | 98.15           | NC_031409           |
| YK7  | <i>Cynoglossus cynoglossus</i>               | 0.95        | 0       | 89.28           | MK572144            |
| YK8  | <i>Protonibeia diacanthus</i>                | 0.92        | 0       | 100             | JN312910            |
| YK9  | <i>Trichiurus lepturus nanhaiensis</i>       | 0.99        | 0       | 100             | KJ202212            |
| YK10 | <i>Hilsa kelee</i> *                         | 0.99        | 0       | 89.60           | AP011613            |

|             |                               |      |   |       |           |
|-------------|-------------------------------|------|---|-------|-----------|
| <b>YK11</b> | <i>Upeneus quadrilineatus</i> | 0.92 | 0 | 99.85 | HQ564510  |
| <b>YK12</b> | <i>Gazza minuta</i>           | 1    | 0 | 98.00 | NC_026232 |
| <b>YK13</b> | <i>Caranx tille</i>           | 0.93 | 0 | 99.56 | KU535570  |
| <b>YK14</b> | <i>Scomberomorus guttatus</i> | 0.96 | 0 | 99.56 | OM462843  |
| <b>YK15</b> | <i>Selar crumenopthalmus</i>  | 1    | 0 | 99.85 | KY894985  |
| <b>YK16</b> | <i>Scomber australasicus</i>  | 1    | 0 | 99.71 | AB102725  |


\*Small pelagic fish

The lowest interspecies distance was found between *Megalaspis cordyla* and *Caranx tille* (0,103) while the highest distance was found between *Gazza minuta* and *Eleutheronema tetradactylum* (0,300 (Table 3). All the species were clearly seen the cluster into different group in the Neighbour-joining tree (Figure 1).

In this study, small pelagic fish were identified from five species under three families: Carangidae, Scombridae, and Clupeidae (Figure 2). Among that species, it found that *Hilsa kelee* (YK10) was distinct nucleotide differences from several reference sequences found in Genbank. Thus, the sequence was not clustered into monophyletic clade with the references.



**Figure 1.** Neighbour-joining tree of *COI* gene fragment from 16 species of marine fish compared to reference sequences obtained from Genbank



**Figure 2.** Phylogenetic tree of small pelagic fish consisted of three Order originated from two landing sites based on *COI* gene fragment. The tree was constructed using Neighbour-joining algorithm in MEGA X

**Table 2.** The list of fish species identified by COI region from fish landing sites in Depok Beach and Baron Beach, Yogyakarta

| ID  | Species name                       | Family        | Order             | Common name                      | Fish group    | Habitat                                                       | IUCN status |
|-----|------------------------------------|---------------|-------------------|----------------------------------|---------------|---------------------------------------------------------------|-------------|
| YK1 | <i>Auxis thazard</i> *             | Scrombridae   | Scrombiformes     | Frigate tuna                     | Small pelagic | Atlantic, Mediterranean, Indian and Pacific (Western Central) | LC          |
| YK2 | <i>Megalaspis cordyla</i> *        | Carangidae    | Carangiformes     | Torpedo scad                     | Small pelagic | Indo-West Pacific                                             | LC          |
| YK3 | <i>Eleutheronema tetradactylum</i> | Polynemidae   | Perciformes       | East Asian four-finger threadfin | Demersal      | Northwest Pacific                                             | NE          |
| YK4 | <i>Plicofollis dussumieri</i>      | Ariidae       | Siluriformes      | Blacktip sea catfish             | Demersal      | Indo-west Pacific                                             | LC          |
| YK5 | <i>Argyrosomus japonicus</i>       | Sciaenidae    | Perciformes       | Japanese meagre                  | Demersal      | Indo-west Pacific                                             | EN          |
| YK6 | <i>Pennahia macrocephalus</i>      | Sciaenidae    | Perciformes       | Big-head pennah croaker          | Demersal      | Indo-west Pacific                                             | LC          |
| YK7 | <i>Cynoglossus cynoglossus</i>     | Cynoglossidae | Pleuronectiformes | Bengal tongue sole               | Demersal      | Indo-West Pacific                                             | LC          |
| YK8 | <i>Protonibea diacanthus</i>       | Sciaenidae    | Perciformes       | Blackspotted croaker             | Demersal      | Indo-West Pacific                                             | NT          |

| ID   | Species name                           | Family        | Order             | Common name                | Fish group    | Habitat                                                | IUCN status |
|------|----------------------------------------|---------------|-------------------|----------------------------|---------------|--------------------------------------------------------|-------------|
| YK9  | <i>Trichiurus lepturus nanhaiensis</i> | Trichiuridae  | Scrombriformes    | Largehead hairtail         | Demersal      | Circumtropical and warm temperate seas                 | LC          |
| YK10 | <i>Hilsa kelee*</i>                    | Clupeidae     | Clupeiformes      | Kelee shad                 | Small pelagic | Indo-West Pacific                                      | LC          |
| YK11 | <i>Upeneus quadrilineatus</i>          | Mullidae      | Syngnathiformes   | Four-stripe goatfish       | Demersal      | Indo-West Pacific                                      | NE          |
| YK12 | <i>Gazza minuta</i>                    | Leiognathidae | Chaetodontiformes | Toothpony                  | Demersal      | Indo-Pacific                                           | LC          |
| YK13 | <i>Caranx tille*</i>                   | Carangidae    | Carangiformes     | Tille trevally             | Small pelagic | Indo-West Pacific                                      | LC          |
| YK14 | <i>Scomberomorus guttatus</i>          | Scombridae    | Scrombriformes    | Indo-Pacific king mackerel | Large pelagic | Indo-West Pacific                                      | DD          |
| YK15 | <i>Selar crumenophthalmus*</i>         | Carangidae    | Carangiformes     | Bigeye Scad                | Small pelagic | Eastern Indian Ocean and Western Central Pacific Ocean | LC          |
| YK16 | <i>Scomber australasicus</i>           | Scombridae    | Scrombriformes    | Blue mackerel              | Large pelagic | Indo-West Pacific; East Pacific                        | LC          |

\*Small pelagic fish

**Table 3.** Nucleotides differences between species of marine fish species from two landing sites in Yogyakarta

|    | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16 |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|
| 1  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |    |
| 2  | 0,183 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |    |
| 3  | 0,234 | 0,233 |       |       |       |       |       |       |       |       |       |       |       |       |       |    |
| 4  | 0,206 | 0,207 | 0,216 |       |       |       |       |       |       |       |       |       |       |       |       |    |
| 5  | 0,196 | 0,223 | 0,259 | 0,238 |       |       |       |       |       |       |       |       |       |       |       |    |
| 6  | 0,210 | 0,230 | 0,281 | 0,234 | 0,154 |       |       |       |       |       |       |       |       |       |       |    |
| 7  | 0,246 | 0,255 | 0,247 | 0,239 | 0,250 | 0,253 |       |       |       |       |       |       |       |       |       |    |
| 8  | 0,192 | 0,230 | 0,252 | 0,230 | 0,155 | 0,134 | 0,266 |       |       |       |       |       |       |       |       |    |
| 9  | 0,205 | 0,233 | 0,256 | 0,251 | 0,223 | 0,201 | 0,250 | 0,221 |       |       |       |       |       |       |       |    |
| 10 | 0,193 | 0,256 | 0,244 | 0,234 | 0,243 | 0,245 | 0,266 | 0,239 | 0,245 |       |       |       |       |       |       |    |
| 11 | 0,169 | 0,212 | 0,236 | 0,208 | 0,226 | 0,247 | 0,267 | 0,251 | 0,235 | 0,218 |       |       |       |       |       |    |
| 12 | 0,224 | 0,237 | 0,300 | 0,224 | 0,273 | 0,259 | 0,245 | 0,274 | 0,246 | 0,272 | 0,250 |       |       |       |       |    |
| 13 | 0,172 | 0,103 | 0,213 | 0,211 | 0,207 | 0,239 | 0,215 | 0,243 | 0,242 | 0,257 | 0,198 | 0,238 |       |       |       |    |
| 14 | 0,138 | 0,197 | 0,245 | 0,192 | 0,229 | 0,196 | 0,266 | 0,210 | 0,215 | 0,215 | 0,192 | 0,212 | 0,210 |       |       |    |
| 15 | 0,169 | 0,185 | 0,241 | 0,231 | 0,246 | 0,225 | 0,247 | 0,251 | 0,236 | 0,235 | 0,182 | 0,256 | 0,158 | 0,193 |       |    |
| 16 | 0,132 | 0,220 | 0,265 | 0,233 | 0,206 | 0,209 | 0,270 | 0,233 | 0,203 | 0,234 | 0,197 | 0,253 | 0,214 | 0,173 | 0,194 |    |

## Discussion

In this study, 16 species of commercial and edible fish species from Yogyakarta were identified. Nowadays, the molecular identification using DNA barcoding is indispensable in the field of marine and fisheries sciences. Previous study done with marine fish mainly focus on the morphological identification on specific species for example *Decapterus macrosoma* (Kusumanigrum *et al.*, 2021). Fish species were determined using *COI* gene region. This region showed higher similarity of the same species than compared to the sequences sampled from different species (Andriyono *et al.*, 2022; Ward *et al.*, 2005). The genetic distance between different species (intrerspecies) was more than 0.1, similar with the average of previous results (Hebert *et al.*, 2004; Li *et al.*, 2025; Ward *et al.*, 2008).

The species based on genetic similarity and identity using BLAST-N was identified. Most of our samples showed higher in both values than 97% which are predetermined as species border (Riani *et al.*, 2021). In addition, high sequence similarity value ranging from 98-100% is one of the most accurate confirmations of the success of the barcoding approaches (Alcantara and Yambot, 2016; Bhattacharjee *et al.*, 2012; Cerutti-Pereyra *et al.*, 2012). Comparison to available DNA sequences in the database and the genetic distance analysis conducted in this research confirms the utility of the *COI* gene in the precise identification of marine fish species in Yogyakarta. Previous study for marine species from Kutaradja Port, Aceh, Indonesia successfully identified 37 species of fish (Andriyono *et al.*, 2022).

However, this study is lacking in information about population structure which may supported the conservation of fish species. Although most species were identified as shown in the list of IUCN as LC category. In addition, there are also fish species that are categorized as Not Evaluated (NE), Data deficient (DD), Near Threatened (NT; for example *Protonibea diacanthus*) and even Endangered (EN; for example *Argyrosomus japonicus*). Thus, the research on marine fish species in Indonesia need to be expanded. The improvement including accurate species identification could lead to better fisheries management and conservation. In the future study, *COI* and additional barcoding marker will be employed to evaluate the intraspecies genetic diversity. The study would be very useful for conservation and fisheries management in Indonesia.

## Acknowledgements

The author would like to express particular gratitude to LPPM Universitas Kristen Duta Wacana for the grant with scheme Riset Pengembangan Dosen (No. 80/D.01/LPPM/2024).

## Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this research article.

## References

Alcantara, S. G. and Yambot, A. V. (2016). DNA barcoding of commercially important Grouper species (Perciformes, Serranidae) in the Philippines. *Mitochondrial DNA Part A*, 27:3837-3845. <https://doi.org/10.3109/19401736.2014.958672>

Andriyono, S., Damora, A. and Kim, H. W. (2022). Molecular identification and phylogenetic tree reconstruction of marine fish species from the fishing port of Kutaradja, Banda Aceh. *Journal of Tropical Biodiversity and Biotechnology*, 7:71955. <https://doi.org/10.22146/jtbb.71955>

Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., Bhagat, P., Gupta, R., Sood, U., Lal, R. and Toteja, R. (2023). DNA barcoding, an effective tool for species identification: A review. *Molecular Biology Reports*, 50:761-775. <https://doi.org/10.1007/s11033-022-08015-7>

Arisuryanti, T., Waskito A. K., Shabrina, F. N., Febriyanti, D., Daryono, B. S. and Priyono, D. S. (2024). Phylogenetic and genetic variation of common mudskippers (*Periophthalmus kalolo* Lesson, 1831) from the southern coast of Java, Indonesia inferred from the COI mitochondrial gene. *Journal of Genetic Engineering and Biotechnology*, 22:100335. <https://doi.org/10.1016/j.jgeb.2023.100335>

Azrita and Syandri, H. (2015). Morphological character among five strains of giant gourami, *Oshproneus gouramy* Lacepede, 1801 (Actinopterygii: Perciformes: Osphronemidae) using a truss morphometric system. *International Journal of Fisheries and Aquatic Studies*, 2:344-350.

Bhattacharjee, M. J., Laskar, B. A., Dhar, B. and Ghosh, S. K. (2012). Identification and re-evaluation of freshwater catfishes through DNA barcoding. *PLoS ONE*, 7:e49950. <https://doi.org/10.1371/journal.pone.0049950>

Cerutti-Pereyra, F., Meekan, M. G., Wei, N. W. V., O'Shea, O., Bradshaw, C. J. A. and Austin, C. M. (2012). Identification of rays through dna barcoding: an application for ecologists. *PLoS ONE*, 7:e36479. <https://doi.org/10.1371/journal.pone.0036479>

Fitrian, T. and Madduppa, H. (2020). Determination of shortfin scad (*Decapterus macrosoma*) using morphological analysis methods and dna barcoding from Muara Baru fish market North Jakarta. *Bawal Widya Riset Perikanan Tangkap*, 12:127-135. <http://dx.doi.org/10.15578/bawal.12.3.2020.127-135>

Hebert, P. D. N., Ratnasingham, S. and De Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings*

of the Royal Society of London. Series B: Biological Sciences, 270:S96-S99. <https://doi.org/10.1098/rsbl.2003.0025>

Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. and Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2:e312. <https://doi.org/10.1371/journal.pbio.0020312>

Khatami, A. M., Yonvitner and Setyobudiandi, I. (2019). Biological characteristics and exploitation rates of small pelagic fish in the northern waters of Java. Jurnal Ilmu dan Teknologi Kelautan Tropis, 11:637-651. <https://doi.org/10.29244/jitkt.v11i3.19159> (In Indonesian).

Kusumanigrum, R. C., Alfiatunnisa, N., Murwantoko, M. and Setyobudi, E. (2021). Morphometric and meristic characteristics of the flying fish (*Decapterus macrosoma* Bleeker, 1851) on the southern coast of the Special Region of Yogyakarta, Indonesia. Jurnal Perikanan Universitas Gadjah Mada, 23:1. <https://doi.org/10.22146/jfs.52348> (In Indonesian).

Li, H., Cheng, H., Huang, R., Qiu, Z. and Zhang, R. (2025). DNA barcoding of the Genus *Discogobio* (Teleostei, Cyprinidae) in China. Fishes, 10:157. <https://doi.org/10.3390/fishes10040157>

Modeel, S., Negi, R. K., Sharma, M., Dolkar, P., Yadav, S., Siwach, S., Yadav, P. and Negi, T. (2024). A comprehensive DNA barcoding of Indian freshwater fishes of the Indus River system, Beas. Scientific Reports: 14:2763. <https://doi.org/10.1038/s41598-024-52519-0>

Riani, S., Prabowo, R. E. and Nuryanto, A. (2021). Molecular characteristics and taxonomic status of morphologically similar barnacles (*Amphibalanus*) assessed using the cytochrome c oxidase 1 gene. Biodiversitas Journal of Biological Diversity, 22:1-7. <https://doi.org/10.13057/biodiv/d220349>

Tamura, K., Stecher, G. and Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38:3022-3027. <https://doi.org/10.1093/molbev/msab120>

Wang, Z. D., Guo, Y. S., Liu, X. M., Fan, Y. B. and Liu, C. W. (2012). DNA barcoding South China Sea fishes. Mitochondrial DNA, 23:405-410. <https://doi.org/10.3109/19401736.2012.710204>

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. and Hebert, P. D. N. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360:1847-1857. <https://doi.org/10.1098/rstb.2005.1716>

Ward, R. D., Holmes, B. H., White, W. T. and Last, P. R. (2008). DNA barcoding Australasian chondrichthyans: Results and potential uses in conservation. Marine and Freshwater Research, 59:57-71. <https://doi.org/10.1071/MF07148>

Zhang, L., Zhang, J., Song, P., Liu, S., Liu, P., Liu, C., Lin, L. and Li, Y. (2020). Reidentification of *Decapterus macarellus* and *D. macrosoma* (Carangidae) reveals inconsistencies with current morphological taxonomy in China. *ZooKeys*, 995:81-96. <https://doi.org/10.3897/zookeys.995.58092>

(Received: 6 November 2024, Revised: 29 July 2025, Accepted: 11 November 2025)